Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(27): 10694-10703, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357742

RESUMO

Due to the strong oxidizability of H2O2, rapid, accurate, sensitive, and stable sensors of hydrogen peroxide (H2O2) have attracted wide attention in the chemical industry, food, medicine, household detergents, and environmental monitoring fields. Here, a high-performance H2O2 electrochemical sensing platform is proposed based on an Au nanoparticles@UiO-66 film coated on a carbon cloth (CC) electrode (Au NPs@UiO-66/CC electrode). The Au NPs@UiO-66/CC electrode was prepared through solvothermal growth of a UiO-66 film on a functionalized three-dimensional CC electrode, followed by in situ deposition of Au NPs into the UiO-66 film under a periodic galvanostatic pulse current. The in situ preparation strategy greatly improves the electrical interaction between Au NPs@UiO-66 and the CC substrate without sacrificing the electrochemical activity of the Au NPs@UiO-66/CC electrode. Meanwhile, thanks to the high specific surface area of the three-dimensional Au NPs@UiO-66/CC electrode, the optimized Au NPs@UiO-66/CC electrode illustrates excellent electrochemical detection capability for H2O2 with an extensive linear range (0.1-21 mM), high sensitivity (1048.01 µA mM-1 cm-2), and lower limit of detection [0.033 µM (S/N = 3)] and limit of quantification [0.109 µM (S/N = 3)]. At the same time, the encapsulated structure of Au NPs in the UiO-66 film also endows the composite electrode with specific sensing performance owing to the regular opening channels of the UiO-66 films that prevent large-size interferents from reacting to the electrochemically active Au NPs. Together with all these advantages, the proposed sensing platform would exhibit great potential for electrochemical sensors and bioelectronics.

2.
Food Chem ; 405(Pt B): 134997, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36442246

RESUMO

This is the first study to investigate the effect of different lactic acid bacteria fermentation methods on the purine content of mutton jerky and to examine the changes in purine in these fermented mutton jerky samples underan in vitro simulated digestive system to determine an efficient method for regulating exogenous purine intake. According to the analysis, x3-2b Lactobacillus plantarum and composite bacteria can directly reduce the purine content in fermented dried mutton and achieve the purpose of reducing the intake of purine. However, after simulated intestinal digestion, it was observed that the purine content of these different sample groups was significantly decreased, and 37x-3 Pediococcus pentosaceus had the better effect. It has been shown that the 37x-3 Pediococcus pentosaceus, Lactobacillus sake, and composite bacteria significantly enhance the degree to which residual purine is depleted in the large intestine during digestion. In sum, one potentially successful method of regulating exogenous purine consumption is the development of fermented meat products using certain beneficial bacteria as a starter.


Assuntos
Latilactobacillus sakei , Produtos da Carne , Carne Vermelha , Ovinos , Animais , Purinas , Pediococcus pentosaceus , Digestão
3.
Food Sci Biotechnol ; 29(7): 927-937, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32582455

RESUMO

The effects of the secondary metabolite biosynthesis on the metabolism and morphology of the Monascus purpureus were investigated in this study. Hypha and septum length became longer after deletion of genes pigR and pksCT in M. purpureus LQ-6 by Agrobacterium tumefaciens-mediated transformation technology, highly branched hyphae, much smaller and freely dispersed mycelial pellets were observed in M. purpureus. Compared with that in the wild-type, the level of intracellular NADH and NADPH was almost constant in M. purpureus ΔpigR at 4 days, but the NADH and NADPH levels decreased by 1.58-fold and 3.71-fold in M. purpureus ΔpksCT. The present study can not only provide a kind of strategy to improve the Monascus pigments production, but also provide theoretical support for the further study of relationship between the secondary metabolites, metabolism and morphological change.

4.
J Biosci Bioeng ; 129(2): 229-236, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500988

RESUMO

Monascus pigments (MPs), the secondary metabolites produced by the fungal strains of Monascus spp., hold commercial importance in not only the food and meat industries, but also therapeutic, cosmetic, and textile industries. To reduce the cost of MPs production, the utilization of rice straw hydrolysate as a substrate in submerged fermentation was investigated. The atmospheric and room temperature plasma (ARTP) mutation system was employed to develop a mutant strain Monascus purpureus M630, with high total extracellular Monascus pigments (exMPs) production of 34.12 U/mL in submerged fermentation with glucose-based medium. The results revealed that M. purpureus M630 produces 8.61 U/mL and 20.86 U/mL of exMPs in rice straw hydrolysate alone or in combination with glucose fermentation medium, respectively. Furfural (Fur) and 5'-hydroxymethyl furfural (5'-HMF), produced during pretreatment and hydrolysis of rice straw; are generally inhibitory for microbial growth and fermentation. Our findings revealed that M. purpureus M630 develops the tolerance and adaptation mechanisms in response to 5'-HMF and Fur during growth and MPs biosynthesis in rice straw hydrolysate. In conclusion, we report that rice straw hydrolysate can serve as an efficient and low-cost substitute for the MP production through submerged fermentation by Monascus spp.


Assuntos
Monascus/metabolismo , Oryza/metabolismo , Pigmentos Biológicos/biossíntese , Análise Custo-Benefício , Fermentação , Glucose/metabolismo , Hidrólise , Pigmentos Biológicos/economia , Especificidade por Substrato
5.
J Agric Food Chem ; 67(49): 13673-13683, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31617717

RESUMO

Because Monascus pigments (MPs) predominantly accumulate in the cytoplasm during submerged fermentation, many biotechnologies are applied to enhance the production of extracellular MPs (exMPs) to reduce the downstream processing costs. In this study, the genes monascus_7017 and monascus_8018, identified as ERG4 genes, were knocked out to disrupt the ergosterol biosynthetic pathway and enhance the production of exMPs in Monascus purpureus LQ-6. Double-deletion of EGR4 in M. purpureus LQ-6 reduced ergosterol concentration by 57.14% and enhanced exMP production 2.06-fold. In addition, integrated transcriptomic and proteomic analyses were performed to elucidate the transmembrane secretion mechanism of exMPs based on the relationship between ergosterol synthesis and membrane permeability, which revealed that several metabolic pathways were noticeably dynamic, including fatty acid degradation, amino acid metabolism, energy metabolism, carbohydrate metabolism, and transport. These findings therefore clarified the secretion mechanism of exMPs and provide a novel strategy for further enhancement of exMP production in submerged fermentation.


Assuntos
Membrana Celular/metabolismo , Ergosterol/biossíntese , Monascus/metabolismo , Pigmentos Biológicos/biossíntese , Vias Biossintéticas , Membrana Celular/genética , Permeabilidade da Membrana Celular , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monascus/genética
6.
Bioresour Technol ; 272: 552-560, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396112

RESUMO

A mutant Monascus purpureus strain, M183, which produced monascus pigments (MPs) at 8460 U/g via solid-state batch-fermentation, was generated using the atmospheric and room temperature plasma (ARTP) mutation system. The optimal glucose concentration (80 g/L) in traditional fermentation media that yielded the highest MPs productivity was determined. Response surface methodology (RSM) was applied to maximize MPs production using liquid-state batch-fermentation. Under optimal conditions (0.58 g/L MgSO4·7H2O, 0.02 g/L ZnSO4·7H2O, 0.02 g/L FeSO4·7H2O and 4.85 g/L NH4NO3), 207.67 U/mL of MPs were produced with 98.12% validity based on the predicted value. Extracellular MPs production increased significantly to 35.52 U/mL, compared to 14.19 U/mL of the original strain, M. purpureus LQ-6. M. purpureus spores immobilized in sodium alginate were studied. A simultaneous fermentation and separation system was established for MPs using the novel absorption resin LX300C to enhance production efficiency of extracellular MPs.


Assuntos
Fermentação , Monascus/metabolismo , Pigmentos Biológicos/metabolismo
7.
Microb Cell Fact ; 17(1): 35, 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29501062

RESUMO

BACKGROUND: Phenolic compounds generated in hydrolysis of lignocellulosic materials are major limiting factors for biological production of solvents by Clostridia, but it lacks the attention on the study of adaptation or resistance mechanisms in response to phenolic compounds. RESULTS: Gene Cbei_3304, encoding a hypothetical membrane transport protein, was analyzed by bioinformatic method. After insertional inactivation of the functionally uncertain gene Cbei_3304 in Clostridium beijerinckii NCIMB 8052, resulted in enhanced phenolic compounds tolerance. Compared to the parent strain C. beijerinckii NCIMB 8052, evaluation of toxicity showed the recombination stain C. beijerinckii 3304::int had a higher level of tolerance to four model phenolic compounds of lignocellulose-derived microbial inhibitory compounds. A comparative transcriptome analysis showed that the genes were involved in membrane transport proteins (ABC and MFS family) and were up-regulated expression after disrupting gene Cbei_3304. Additionally, the adaptation of C. beijerinckii NCIMB 8052 in response to non-detoxified hemicellulosic hydrolysate was improved by disrupting gene Cbei_3304. CONCLUSION: Toxicity evaluation of lignocellulose-derived phenolic compounds shows that Cbei_3304 plays a significant role in regulating toxicities tolerance for ABE fermentation by C. beijerinckii, and the adaptation of non-detoxified hemicellulosic hydrolysate is significantly improved after inactivation of Cbei_3304 in wild-type strain C. beijerinckii NCIMB 8052. It provided a potential strategy for generating high inhibitor tolerance strains for using lignocellulosic materials to produce solvents by clostridia in this study.


Assuntos
Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Proteínas de Membrana Transportadoras/genética , Fenóis/metabolismo , Butanóis/metabolismo , Biologia Computacional , Fermentação , Perfilação da Expressão Gênica , Hidrólise , Lignina/metabolismo , Mutagênese Insercional , Solventes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...